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Oscillators with Chaotic Behavior: 
An Illustration of a Theorem by Shil'nikov 
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Using an explicit one-parameter family of differential equations describing 
oscillators with feedback effects, we prove the existence of values of the 
parameters such that there exist infinitely many unstable periodic orbits of 
saddle type. The proof relies on a theorem by Shil'nikov which we propose as an 
explanation for the origin and structure of the chaotic behavior displayed by 
many well-known third-order differential systems. 

KEY WORDS: Strange attractor; homoclinic connection; saddle focus; 
oscillator. 

1. INTRODUCTION 

For many years, a lot of effort has been devoted to the study of stochastic- 
ity inherent in the solutions of ordinary differential equations. From the 
physical point of view, such equations either describe particularly simple 
(generally electromechanical) systems, (l-v) or arise as simplified models 
when investigating more complicated systems naturally described, e.g., by 
partial differential equations (a historical example is the well-known Lorenz 
model for convection(8)). Most current interest in such topics corresponds 
to an interest in understanding the mechanisms of the onset of turbulence 
in physical, chemical, biological, etc. systems. (9) Unfortunately, as soon as 
one intends to define turbulence in the frame of an appropriate statistical 
mechanics, one is faced with very profound and delicate mathematical 
problems such as the existence of strange attractors and invariant measures 
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with strong ergodic properties. (l~ In particular, as far as reasonably 
realistic models are considered like differential systems given by explicit 
algebraic equations, this objective is still far beyond our possibilities, 
although there seems to be numerical evidence for the existence of actual 
strange attractors in many of these systems. 

A fundamental step in the investigation of stochasticity in such differ- 
ential equations consists in proving the existence of infinitely many isolated 
periodic orbits. However, it seems doubtful if not hopeless to get general 
theorems giving definitive answers to this last problem under analytically 
computable conditions. The main purpose of this paper is to give convinc- 
ing arguments that the origin and structure of chaotic behavior displayed 
by many one-parameter families of third-order differential equations can be 
understood in the light of the following theorem, which is a slight modifica- 
tion of an old result by Shil'nikov (11) (see also Refs. 12-16 for analog 
results in four-dimensional Hamiltonian systems): 

Theorem I .  Consider the system 

Yr = px - o~y + P ( x ,  y , z )  

9 = wx + py + O ( x ,  y , z )  (1) 

2 = M + R ( x , y , z )  

where P, Q, R are C r functions (1 < r < co) vanishing together with their 
first derivative at 0 = (0,0,0). 3 Let us assume that one of the orbits, 
denoted by F 0, is asymptotic to 0 as t ~  _-_ ~ ,  being bounded away from 
any other singularity (I" o is then a homoclinic connection). Then if 

h > - p  > 0 (2) 

every neighborhood of the unstable orbit F 0 contains a denumerable set of 
unstable periodic solutions of saddle type. 

As a first argument we define in Section 2, a solvable model for which 
on the one hand one can observe numerically chaotic behavior and on the 
other hand one can prove that the previous theorem applies. The second 
part of our argumentation consists of Section 3, in the numerical investiga- 
tion of three models extracted from the literature. We conclude with some 
remarks in Section 4. 

2. A SOLVABLE MODEL 

Clearly, all conditions in Theorem 1 are easily computable, except the 
existence of the homoclinic connection. In this section, we will exhibit 

3 Using Poincar~'s terminology, the origin is then a saddle focus. 
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one-(free)parameter families of differential systems where this difficulty can 
be overcome. These families arise as specifications of the class of oscillators 
with feedback effects introduced in Ref. 17 and whose equations may be 
written as 

2 + f12 + x = ~l 2 = y 
o r  p = 2 ( 3 )  

il = f , ( x )  e = - y  - / 3 z  + f . ( x )  

where/8 > 0 is the dissipation and f~ a one-parameter real-valued function. 
Various sequences of bifurcations leading to chaotic behavior can be 
obtained with (3) by appropriate choices of f . ( x ) .  Moreover, with the 
particular choice of piecewise linear functions f . ,  

s = 1 + ax  if x < 0 

f ~ ( x )  = 1 - / , x  if x > 0 (4) 

we can understand the origin of the numerically observed stochasticity 
since we can find values of the parameters such that the conditions of the 
previous theorem are satisfied, 4 namely, we can find/3, a, a n d / ,  such that 
an orbit F 0 leaves the fixed point A ( - 1 /  a, O, O) and returns to it as 
t + + ~ ,  the eigenvalues of the Jacobian matrix at A satisfying condition 
(2) (of course, it is the piecewise-linear character of f~ which makes the 
calculations easy). Let us sketch the main steps of the proof of the existence 
of such a parameter  set. 

2.1. Step 1: Algebraic Considerations 

First, we must remark that if a and /, are positive, one has two 
equilibria for system (3); one A ( - l / a , 0 , 0 )  is in the half-space x < 0, the 
other one B ( 1 / # , 0 , 0 )  in the half-space x > 0. Let us denote by )t and 
p _.+ ioa the eigenvalues of the Jacobian matrix at A, and by L and R _ ira 
those corresponding to B. For the sake of simplicity, (p, ~0, R)  are chosen as 
parameters instead of (fl, a, i~). Then )t,/3, and a are given by 

X = (1  - o 2 - o a 2 ) / 2 0  
( 5 )  

/3 = - ( x  + 2 0 )  

and 

a = 2t(p 2 + oa 2) 

4 Of course, with system (3) and f~(x) given by Eq. (4), one has not the smoothness condition 
(13) r required in Theorem 1. The proof for the C case (1 < r ~< ~) extends however trivially 

to the problem considered here. 
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Since the point  A 
condit ion (2) is thus equivalent to 

p2+ 1 < 602 < 3p2 + l 

Similarly, the expressions for L, [2, and ~ are 

L = (1 + 3p 2 - ~02)/2p - 2R 

~2 = 1 31- 3R 2 - R ( I  + 3p 2 - ~2)/p 

and 

will play the role of the origin in the above theorem, 

(6) 

(7) 

= (R2 +  2)(R2 + _ 1 ) / 2 R  

Indeed, in order to satisfy Eqs. (2) or (6) together with the existence of F 0, 
we choose a priori p and ~ and let R vary as a free parameter.  

2.2. Step 2: Invariant Manifolds of A 

The invariant manifolds of A coincide with affine manifolds in the 
ne ighborhood of this equilibrium. The unstable manifold corresponding to 
the eigenvalue 2~ intersects the x = 0 plane at the point  M(O,2~/a,2~2/a). 
The stable manifold is a plane in a ne ighborhood of A. This plane 17- 
intersects the x = 0 plane along the line D - whose equation is given by 

x = 0 ,  z = 2 p [ f l + l / ( p 2 + o ~ 2 - 1 ) ]  (8) 

All points of D - are not  necessarily points of the stable manifold  of A. The 
following remark which gives a sufficient condit ion for a point  of D -  to 
belong effectively to this manifold will be useful for the computa t ion  of the 
orbit F0. 

Remark  I. If N E D - is such that the orbit which originates f rom N 
at t = 0 is included in the x < 0 half-space for all t > 0, then N belongs to 
the stable manifold of A. 

2.3. Step 3: Existence of F o 

We are looking for a homoclinic orbit  F 0 which consists of three parts. 
Part one: the line segment A M  belonging to the unstable manifold of A 

with the point  M lying in the x = 0 plane. 
Part two: MN defined as the piece of the orbit which originates from M 

at t = 0 and reaches the point  N on the line D -  at a time 
t < 2~/~2 (this last condit ion is not  essential but  allows easier 
computationsS). 

s In such a problem, one can expect for infinitely many values of the parameter t~ (a and/3 
adequately fixed) such that a homoclinic orbit I" 0 exists: in Section 3 we show examples of Fo 
with different structures obtained with Eq. (3) and an analytic f~(x). 
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Part three: the orbit issued from N which, when the condition in Remark 
I is fulfilled, admits A as ~o-limit point. 

The construction of part one of F 0 is trivial. In order to construct the 
second part, let 

[ x . ( t )  

(t) 

z (t) 

= [(ucos t + vsinf~t) ,  expRt + wexpLt + 1// t]  

(t) 
(t) 

(9) 

be the solution of Eq. (3) with f , ( x ) =  1 - / z x  (for all x) and initial 
condition M at t = 0. Let furthermore Pl (resp. P2) be the half-space 
delimited by I I -  and containing (resp. not containing) M. Using adequate 
O and ~0, one can find 0 < Rj < R 2 and 0 < tl < t 2 < 2~r/f~ such that 

XR(tl) > 0 for R e [  RI, R2] 
XR(t2)<O for R e[R1, R2] 
xR,(t) e P  , for t e [ t l ,  t2] 

XR~(t) e P  2 for t e [ t , , t2]  

(10) 

Then a simple continuity argument ensures the existence of R* E ]R l, R2[ 
and t* ~ ]tl, t2[ such that N(XR,(t*), yR*(t*), ZR*(t*)) belongs to D - .  

To end the proof, We must check that N satisfies the condition of 
Remark I, namely, that the orbit issued from the point N stays in the x < 0 
half-space. N necessarily belongs to the part of the line D -  which lies 
between the plane II~ containing the local unstable manifold of B R (1//~, 0, 
0) and the plane parallel to II~ through M; denote by I R and JR the 
intersection points of D - with these planes and let 

d , =  sup (max(d(A,Is) ,d(A,JR)))  (11) 
8 e[/~l,R2l 

where d stands for the usual distance. Then, if d o denotes the distance from 
A to D - ,  it suffices to prove that wherever the point N is on the segment 
(.JREIR,,R21[IR,JR], the orbit issued from N lies, after half a revolution 
around A, at a distance from this point which is lower than d o. Clearly, it is 
enough to take O, ~0, R1, and R 2 such that 

d o > d, exp(ocr/~0) (12) 

As an example, the particular parameter set O -- -0.4,  r = 1.1, Rj = 0.39, 
and R 2 --0.4 satisfies all the required conditions; thus we can claim that 
there exist families of differential equations given by Eqs. (3) and (4)for which 
Theorem 1 applies. 
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In fact, for 0 = - 0 . 4  and to = 1.1, the computer furnishes R[ = 0.3982 
and R~ = 0.3983 as better bounds for R* such that I" 0 exists: the unstable 
manifold of A for both cases is represented in Figs. la and lb. Keeping p 
and to fixed but moving R to the value R = 0.1740, we observe numerically 
a "strange attractor" (Fig. lc) whose structure reflects the existence of F 0 
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Fig. 1. The oscillators (3) with piecewise linear f~(x) given by Eq. (4) and  parameters values 
O = -0 .4 ,  co = 1.1 (a = 0.633625 and /3 = 0.3375). The half of the unstable manifold of A 
going through M (as defined in the main text) diverges along the part of the unstable manifold 
of A which does not intersect the x = 0 plane for R = 0.3983 (a) and  comes back very close to 
M for R = 0.3982 (b). We have also plotted the reference frame and the line D - .  For 
R = 0.1740, a "strange attractor" is numerically displayed whose structure reflects the exis- 
tence (for a larger value of R: 0.3982 < R* < 0.3983) of a homoclinic orbit F 0 satisfying the 
hypothesis of Theorem 1. Full (dotted) line corresponds to the x >/0 (x < 0) half-space. For 
parameter values 0 = - 0 . 2 7  and co= 1.018 (a =0.224635, /3= 0.3375), condition (2) in 
Theorem 1 is no longer fulfilled. (d) shows that chaotic behavior may still occur in this case 
where - p > ~ > 0. 
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for a larger value of R. It should be noticed that even when -O > ~ > 0, 
chaotic behavior may still occur while stable periodic orbits exist for values 
of the parameters in the neighborhood of values where I" 0 arises. A way to 
satisfy these last inequalities on the characteristic exponents evaluated at A 
is to increase the dissipation/?, a and/~ being fixed. For still larger values of 
fi, the equilibrium A no longer remains a saddle focus so that one can no 
more expect to observe chaotic behavior (see Section 4). This corroborates 
previous remarks reported in Ref. 17 where no stochasticity was found with 
the oscillators (3) for "too strong" dissipation values. 

3. NUMERICAL EXAMPLES 

In this section we will pursue our argumentation in examining some 
three-dimensional differential systems which display "strange attractors" 
with the same geometrical structure as observed in Fig. lc with our solvable 
model. Convincing numerical data make clear that the structure of these 
objects still relies on the existence of homoclinic orbits through a saddle 
focus satisfying condition (2). 

3.1. Example 1: The Oscillators with Feedback Effect 
as Defined by Eq. (3) but with Analytical f~(x)(17) 

Figure 2a-c gives numerical evidence for the occurrence, with f ~ ( x )  

=/~x(1 - x) of a succession of unstable homoclinic orbits, the simplest one 
being similar to the one previously investigated with the piecewise linear 
function f~. A typical "attractor" whose structure reflects the existence of 
these homoclinic orbits is represented in Fig. 2d. 

3.2. Example 2: A "Prototype" Equation Proposed by Rossler (]8-2~ 

The simple differential system 

2 =  y z 

j ,  = x + a y  (13) 
= b x  - c z  + x z  

has been devised by R6ssler in order to give examples of what he calls, 
respectively, "screw type" (Figs. 1, 2, and 3) and "spiral type" (Fig. 4) 
strange attractors. Figure 3a-c (to be compared with Figs. la-c)  shows that 
the "screw-type" attractor reveals that one is "close" to a situation where 
Theorem 1 applies (it seems that R6ssler had already the feeling of such a 
phenomenon). "Spiral-type" attractors will be discussed in the conclusion. 
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Fig. 2. The oscillators (3) with f~,(x) =/~x(1 - x) and fl = 0.4. As mentioned in footnote 5, 
we have convincing numerical data that confirm the existence of a succession of unstable 
homoclinic orbits biasymptotic to the origin and satisfying Theorem 1. The simplest ones are 
represented in (a) # = 1.6064, (b)/~ = 1.0232, (c)/z = 0.9148. A characteristic "strange attrac- 
tor" is observed for / t  = 0.872 (d). The structure of this attractor strongly suggests that one is 
also not too far from values of the parameters such that the second equilibrium B(1, 0, 0) plays 
the role of the origin in Theorem 1, the time t being replaced by - t. 

3.3. Example 3: A Three-Mode Model for the Development of a 
Modulation Instability in Nonequilibrlum Media 

I n  R e f .  21,  F a b r i k a n t  a n d  R a b i n o v i c h  d i s c u s s  t h e  s y s t e m  

2 = y ( z  - 1 + x 2) + '~x 

j ,  = x ( 3 z  + 1 - x 2) + ~,y 

= - 2 z ( p  + x y )  

(14) 
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which is a three-mode model for the description of a stochastic modulation 
of waves in one-dimensional media. Figure 3f represents a "strange attrac- 
tor" exhibited by Eq. (14) for the parameters set v = 1.1,7 = 0.87. Figure 
3d-e gives numerical evidences that a homoclinic orbit F 0 exists for a value 
of 7 slightly larger and that Theorem 1 is again quite appropriate to explain 
the observed chaotic behavior. 

Obviously, we do not pretend to give an exhaustive review of the 
three-dimensional differential systems displaying chaotic behavior interpret- 
able in terms of Theorem 1. Nevertheless, we think that the three previous 
examples show significantly the efficiency of this theorem seen as a crite- 
rion which allows one to distinguish systems generating stochasticity. 

4. CONCLUSION 

To conclude, let us remark that in none of these examples, chaos is to 
be observed for values of the parameters where F 0 is supposed to exist; this 
interesting situation requires special conditions on the system as e.g., the 
invariance under the transformation (x, y , z )~  ( - x ,  -y ,  - z )  as proposed 
in Ref. 3. Indeed, when symmetries (or "nearby" symmetries) are invoked, 
even homoclinic orbits through equilibria with real characteristic exponents 
can give rise to chaotic behavior as described, e.g., in Refs. 8, 14, and 
22-27. It is characteristic for distinguished systems of the  kind presented 
here that symmetry properties are not necessary to make the existence of 
stochasticity plausible. 

Let us end with a somewhat more technical remark: the evolution 
from "screw-type" (Figs. 1, 2, and 3) to "spiral-type" (Fig. 4) attractors can 
be understood using the proof of Theorem 1. (11-14) More precisely, when F 0 
exists, there is a horseshoe with infinitely many branches in a typical 
Poincar6 first return map for the flow; the number of branches decreases 
when we move the parameters away from values where a homoclinic orbit 
exists. (13'28) This evolution explains in turn that well-known phenomena 
such as cascades of subharmonic bifurcations, (17'28-35) or intermitten- 
cy (36-38) naturally arise when varying a parameter in such systems. 
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